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Exact Solution of a Many-Fermion System and Its Associated Boson Field 

DANIEL C. MATTIS 

Internatirmal Business ·M~achines Corp., Thomas J. Watsrm Research Center, 
Yorktown Heights, New York 

AND 

ELLIOTI' H. LIEB* 

Belfer Graduate School of Science, Yeshiva University, New York, New York 
(Received 22 September 1964) 

Luttinger's exactly soluble model of a one-dimensional many-fermion system is discussed. We 
show that he did not solve his model properly because of the paradoxical fact that the density oper
ator commutators [p(p), p( - pi )], which always vanish for any finite number of particles, no longer 
vanish in the field-theoretic limit of a filled Dirac sea. In fact the operators p(p) define a boson field 
which is ipso facto associated with the Fermi-Dirac field. We then use this observation to solve the 
model, and obtain the exact (and now nontrivial) spectrum, free energy, and dielectric constant. This 
we also extend to more realistic interactions in an Appendix. We calculate the Fermi surface param
eter iik, and find: anklak!kp = 00 (i.e., there exists a sharp Fermi surface) only in the case of a suffi
ciently weak interaction. 

I. INTRODUCTION 

T HE search for a soluble but realistic model in 
the many-electron problem has been just about 

as unfruitful as the historic quest for the philoso
pher's stone, but has equally resulted in valuable 
bypro ducts. For example, 15 years ago Tomonaga1 

published a theory of interacting fermions which was 
soluble only in one dimension with the provision 
that certain truncations and approximations were 
introduced into his operators. Nevertheless he had 
success in showing approximate boson-like behavior 
of certain collective excitations, which he identified 
as "phonons." (Today we would denote these as 
"plasmons," following the work of Bohm and Pines.2

) 

Lately, Luttingel has revived interest in the subject 
by publishing a variant model of spinless and mass
less one-dimensional interacting fermions, which 
demonstrated a singularity at the Fermi surface, 
compatible with the results of the modern many
body perturbation theory.4 

Unfortunately, in calculating the energies and 
wavefunctions of his model Hamiltonian, Luttinger 
fell prey to a subtle paradox inherent in quantum 
field theory5 and therefore did not achieve a correct 

* Research supported by the U. S. Air Force Office of 
Scientific Research. 

1 S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 5, 544 
(1950). 

2 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953). 
3 J. M. Luttinger, J. Math. Phy~. 4, 1154 (1963). Note 

that we set his Vo = 1, thereby fixmg the umt of energy. 
References to this paper will be frequent, and will be denoted 
by L (72) for example, signifying his Eq. (72). 

4 J. M: Luttinger and J. C. Ward, Phys. Rev. 118, 1417 
(1960). . L (8) h' h 

6 Luttinger made a transform~tlOn, , w 1C was 
canonical in appearance only. But ~n the language of G .. Bar
ton [Introduction to Advanced Fteld Theory, (IntersClence 

solution of the problem he himself had posed. In the 
present paper we shall give the solution to his inter
esting problem and calculate the free energy. We 
shall show the existence of collective plasmon modes, 
and shall calculate the singularity at the Fermi 
surface (which may in fact disappear if the inter
action is strong enough), the energy of the plasmons, 
and the (nontrivial) dielectric constant of the system. 
In an Appendix we shall show how the model may be 
generalized in such a maIUler as to remove certain 
restrictions on the interactions which Luttinger had 
found necessary to impose. 

It is fortunate that solid-state and many-body 
theorists have so far been spared the plagues of 
quantum field theory. Second quantization has been 
often just a convenient bookkeeping arrangement 
to save us from writing out large determinantal 
wavefunctions. However there is a difference be
tween very large determinants and infinitely large 
ones; we shall show that one of the important dif
ferences is the failure of certain commutators to vanish 
in the field-theoretic limit when common sense and 
experience based on finite N tells us they should 
vanish! (Here N refers to the number of particles 
in the field.) 

Publishers, Inc., New York, 1963), pp. 126 et seq.] this 
transformation connected two "unitarily inequivalent" Hil
bert spaces, which has as a consequence that commutators, 
among other operators, must be reworked so as to be well
ordered in fermion field operators. It was first observed by 
Julian Schwinger [phys. Rev. Letters 3, 296 (1959)] that the 
very fact that one postulates the existence of a ground state 
(i.e., the filled Fermi sea) forces certain commutators to be 
nonvanishing even though in first quantization they auto
m:J.tically vanish. The "paradoxical contradictions" of which 
Schwinger speaks seem to anticipate the difficulties in the 
Luttinger model. 
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SOLUTION OF MANY-FERMION SYSTEM 305 

We shall show that these non vanishing com
mutators define boson fields which must ipso facto 
always be associated with a Fermi-Dirac field, and 
we shall use the ensuing commutation relations to 
solve Luttinger's model exactly. Because this model 
is soluble both in the Hilbert space of finite Nand 
also in the Hilbert space N = 0), with different 
physical behavior in each, we believe it has applica
tions to the theory of fields which go beyond the 
study of the many-electron problem. The model can 
be extended to the case of electrons with spin. This 
has interesting consequ~nces in the band theory of 
ferromagnetism, as will be discussed in some detail 
in an article under preparation.5a 

n. MODEL HAMILTONIAN 

We recall Luttinger's HamiltonianS and recapitu
late some of his results: 

H = Ho + H', 

where the "unperturbed" part is 

Ho = 1L dx 1//(X)uaPy,,(X) 

= I: (a,talk - a2ta2k)k, 
k 

and the interaction is 
L 

H' = 2X II dx dy y"~(x)y,,,(x) 
o 

(2.1) 

(2.2a) 

(2.2b) 

(2.3a) 

x atk,alk.a:k.a2k.' (2.3b) 

Here y" is a two-component field and the form (b) 
of the operator is obtained from (a) by setting 

y" = ~ I: eikz(a1k
) 

VL k a2k 
and 

So, the canonical transformation 

(2.6) 

gave the result that 
(2.7) 

and consequently that the spectrum of H = Ho + H' 
was the same as that of H 0, independent of the inter
action vex - y). This can be explicitly verified for 
his choice of 

L 

So = Jf dx dy y";(x)y,,l(x)E(x - y)y,,~(y)y,,2(Y)' (2.8) 
o 

where B(x), not to be confused with the energy B, is 
defined by: 

aE(x - y)/iJx == Vex - y), (2.9) 

assuming that 

IlL iT == L 0 Vex) dx = O. (2.10) 

In the Appendix we shall show among other things 
how to generalize to V F O. It is also simple and 
instructive to verify Eqs. (2.6) and (2.7) somewhat 
differently by using the first quantization, 

N iJ M a 
Ho = -i I:-+ i I:- (2.11) 

,,-1 ax" m-1 ay", 
and 

N M 

H' = 2X :E :E V(x" - Ym), (2.12) 
'Po""'1 ",=-1 

where Nand M are, respectively, the total number 
of" I" particles and "2" particles, with coordinates 
x" and y"., respectively. The properly antisym
metrized wavefunctions are given by 

'lr = det leik'~j I det le'OlYi I 

X exp {~It iB(x" - Ym)}. (2.13) 

Using Eqs. (2.9) and (2.10), 'lr is readily seen to obey 
Schrodinger's equation 

H'lr = E'lr (2.14) 
./,+ 1 ~ -ikX( * *) 
'Y = _ /T £.... e alk, a2k , 

VLk 
(2.4) with just the unperturbed eigenvalue 

with aik's defined to be anticommuting fermion 
operators which obey the usual relations 

(2.5) 
{at.kt at·k·l = 0, and {a;k. at'k' I = OWOkk" 

Luttinger noted that for an appropriate operator 

•• D. Mattis, Physics 1, 184 (1964). 

N M 

E = :E kn - :E q ... (2.15) 
11-=1 m=l 

The wavenumbers are of the form 

ki or qj = 211" integer/L, (2.16) 

as required for periodic boundary conditions. This is 
in exact agreement with the results of Ref. 3, and 
can also be checked in perturbation theory; first.,. 
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306 D. C. MATTIS AND E. H. LIEB 

order perturbation theory also gives vanishing re
sults, and indeed, it is easy to verify that to every 
order in X the cancellation is complete, in accordance 
with the exact result given above. 

Up to this point, Luttinger's analysis (which we 
have briefly summarized) is perfectly correct. It is 
the next step that leads to difficulty. The Hamil
tonian discussed so far has no ground-state energy; 
in order to remove this obstacle, and thereby es
tablish contact with a real electron gas, Luttinger 
proposed modifying the model by 1I filling the infinite 
sea" of negative energy levels (i.e., all states with 
kl < and q2 > 0). Following L(8) we define b's and 
c's obeying the usual anticommutators, such that 

and 
{

bk k;::: 0 

au = c* k k < 0, 

a
2

k = {bk k < 0 
ct k 2: O. 

(2.17) 

Using this notation the total particle-number 
operator becomes 

m. = L: b~bk - C;Ck (2.17a) 
all k 

(Le., the number of particles minus the number of 
holes). 

Since the Hamiltonian commutes with m. we can 
demand that m. have eigenvalue No. In the non
interacting ground state there are no holes and the 
b particles are filled from -kF to kF where kF = 
7r(No/L) = 7rp. The noninteracting ground-state 
energy is N o7rp + energy of the filled sea (W). 

The kinetic energy assumes the form 

Ho = L: (btbk + ctCk) Ikl + W, (2.18) 
allk 

where 
w = (L: k - L: k) (2.18a) 

k<O k;>O 

is the infinite energy of the filled sea, an uninteresting 
c number which we drop henceforth in accordance 
with Luttinger's prescription. The interaction [H', 
Eq. (2.3) and the operator So, Eq. (2.8)] can also be 
expressed in the new language by means of the 
substitution (2.17). The reader will no doubt be 
surprised, as indeed we were, to fi~d that now with 
the new operators, Eq. (2.7), with H defined in (2.6), 
is no longer obeyed. 

Upon further reflection one sees that this must 
be so, on the basis of very general arguments. In the 
new Hilbert space defined by the transformation to 
the particle-hole language (2.17), H is no longer 
unbounded from below and now has a ground state. 

A general and inescapable concavity theorem states 
that if Eo(X) is the ground-state energy in the pres
ence of interactions, (2.3), then 

(2.19) 

This inequality is incompatible with the previous 
result, viz. all E = independent of X, which was 
possible only in the strange case of a system without 
a ground state. 

The same thing can be seen more trivially using 
second-order perturbation theory (first-order per
turbation theory vanishes): It is easily seen that 

Eci2
) = _ (~ ) 

2 f: Iv~£ 12 nl (k)n2 ( - k), (2.20) 

where niCk) and nz(k) are the number of ways of 
shifting a particle of type "1" and type "2" respec
tively by an amount k to an unoccupied state. A 
simple geometric exercise will convince the reader 
of the following facts: (1) if we start with a state 
having a finite number of particles, then nl and n2 

are always even functions of k (i.e., there are just as 
many ways to increase the momentum by k as to 
decrease it by the same amount.) (2) If we start 
with a filled infinite sea then there is no way to 
decrease the momentum of the Ill" particles nor to 
increase the momentum of "2" particles. Hence 
for this second case n 1 (k)n2 ( -k) is nonzero only for 
k > O. Thus Eci2

) vanishes for a state with a finite 
number of particles, but it is negative for a filled sea. 

If the reader is unconvinced by perturbation 
theory, then he can easily prove that Eo is lowered 
by doing a variational calculation. 

What has gone wrong? We turn to some algebra 
to resolve this paradox, and following this, present a 
solution of the field-theoretic problem defined by 
Ho + H' in the representation of b's and c's. 

m. CASE OF THE FILLED DIRAC SEA 

The various relevant operators are given below; 
the form (a) of each equation will not be used in the 
bulk of the paper, and is just given here for complete
ness. In the following equations, p > o. 

(3.Ia) 

L: Ck+pot + :E bt+pot + :E bt+"bk , 
k<-p -p.s;k<O k2:0 

(3.Ib) 

PI( -p) == L: atkal k+p (3.2a) 
k 

L: CkCt+p + L Ckbk+p + L: btbk+p, 
k<-p -p;Sk<O k2:0 

(3.2b) 
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SOLUTION OF MANY-FERMION SYSTEM 307 

(3.3a) 

(3.3b) 

P2( -p) == L a~ka2 H" (3.4a) 
k 

(3.4b) 

Equations (3.1a)-(3.4a) give the density operators 
in the original representation, so let us calculate in 
this language a commutator such as (assume p ;::: 
p' ;::: 0 for definiteness) 

[Pt(-p), Pt(p')J = L [arkatHp, ark,+",atk'] 
k .k' 

+~ +00 

= 1: arkat Hp-,,' - L ark+",a, HI' = O. (3.5) 
k--oo k __ c:o 

The zero result could have been expected by writing 
the operators in first quantization: 

PI( -p) = L e- i
"" and P2(P) = 1: e'''y,., (3.6) 

n m 

whence they evidently commute. Nevertheless, the 
zero result is achieved in (3.5) only through the 
ahnost "accidental" cancellation of two operators, 
each of which may diverge in the field-theory limit 
when N = 00. We now show that in that limit the 
operators in fact no longer cancel, by evaluating the 
commutator using form (b) for the density operators. 
It is a matter of only some minor manipulation to 
obtain the important new result: 

[PI(-P), Pt(P')] = [P2(P), P2(-P')] 

= 5".", L 1 = P2L 5"."" (p' > 0). (3.7a) 
-v<k<O 7r 

In addition, 

(3.Th) 

A quick check lS provided by evaluating the vacuum 
expectation value 

(01 [PI( -p), PI(P)] 10) 

L (01 (hbH"bt'+pck:l! 10) = pL/211' , (3.8) 
-p<k,k'<O 

which is (xactly what is expected on the basis of the 
previous equation. Evidently the form (b) of the 
operators (211'/pL)+!p,( +p) and (211'/pL)+tp2 ( -p) 
have properties of boson raising operators [call them 
A*(p) and B*( -p)] and (211'/pL)+tp1 ( -p) and 
(211'/ pL) +t P2 ( + P ) have properties of boson lowering 
operators [A(p) and B( -p)], i.e., 

[A, B] = [A *, B] = 0, 
(3.9) 

[A(P), A*(P')] = [B(-p),B*(-p)] = 5".",. 

The B field is the continuation of the A field to nega
tive p; therefore together they form a single boson 
field defined for all p. 

The relationship of the p(p)'s to Luttinger's 
N(x)'s, L(25), is obtained by using (2.4): 

Nt(x) = "'~(x)"'t(x) = L 1: PI (p)e- i
". , 

p 
(3.10) 

N 2(x) = "'~(X)"'2(X) = L 1: P2(P)e- iP 
•• 

p 

IV. SOLUTIONS OF THE MODEL HAMILTONIAN 

BEfore making use of the results of the previous 
section, we remark that Pl(+P) and P2(-P) are 
exact raising operators of H o, and Pt( -p) and P2(P) 
are exact lowering operators of H 0 corresponding to 
excitation energies p. That is, 

[Ho, Pl(±p)] = ±PPl(±p), 

[Ho, P2(±p)] = =FPP2(±p). 
(4.1) 

The identification of the p's with boson operators 
made in the previous section suggested to us the 
possibility of constructing a new operator T which 
obeys the same equations (4.1), as Ho. This is indeed 
possible, if we define T as follows: 

(4.2) 

[the p's being defined here and in the remainder of 
the paper by Eqs. (3.1b)-(3.4b), i.e., always in 
the hole-particle representation]. It follows that 

[T, Pl(±p)] = ±PPl(±p) (4.3) 

as required, and similarly for P2(=FP). Therefore, let 
us decompose H into two parts 

with 
H = Ht + H2 (4.4) 

HI = Ho - T = {~ Ikl (btbk + otck ) 

~ . } 
--L L{Pt(P)PI(-P)+P2(-P)Pt(P)} , (4.5) 

1'>0 

and 

H2 = H' + T 

= L [2X 1: {V(P)Pl( -P)P2(P) + v( -p) Pl(P) P2( -p)} 
,,>0 

+ 211' L {Pt(P)PI(-P) + P2(-P)P2(P)}] (4.6) 
1'>0 

with v(p) = real, even function of p. By actual 
construction, all the P operators which appear in H2 
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308 D. C. MATTIS AND E. H. LIEB 

commute with HI' This will be an important feature 
in constructing an exact solution of the model. We 
define an Hermitian operator S, 

(4.7) 

where rp(p) is also a real, even, function of p to be 
determined subsequently by imposing a condition 
that the unitary transformation eiS diagonalize H 2 • 

First we evaluate the effect of such a transformation 
on various operators. It commutes with H 1, 

e,sHle- is = HI = Ho - T, (4.8) 

because both P1 and P2 appearing in S commute with 
H I, as noted above. In the following, p can have 
either sign: 

ei 
S P1(P)e- iS = PI(P) coshrp(p) + P2(P) sinhrp(p), (4.9) 

eiS P2(P)e- iS = P2(P) coshrp(P) + Pl(P)sinhrp(P). (4.10) 

We have verified that this transformation is a proper 
unitary transformation and preserves commutation 
relations (3.7) as well as anticommutation relations 
(2.5), and the reader may easily check this point. 
H2 is brought into canonical form by requiring that 
in (exp is) Hz (exp -is) there be no cross terms 
such as P1(P)P2( -p). This leads to the equation 

tanh 2rp = -}..v(p)/1r, (4.11) 

which cannot be obeyed unless 

l}..v(P) I < 7r for all p. (4.12) 

Equation (4.12) serves to limit the magnitude of 
potentials capable of having well-behaved solutions 
(e.g., a real ground-state energy). For the more 
realistic potentials discussed in the Appendix, there 
is also a more realistic bound on v(p): there, v(p) may 
not be too attractive, but it can have any magnitude 
when it is repulsive, i.e., positive. 

With the choice of rp in (4.11), the evaluation of 
Hz becomes 

eisH2e-is = 2L7r L sech 2rp(P){PI(P)Pl( -p) 
l'>o 

+ P2( -P)P2(P) I - L p(l - sech 2rp). (4.13a) 
,,>0 

The second term is the vacuum renormalization 
energy 

WI = - L p(1 - sech 2rp) 
v>O 

L 100 

{( }..22(p»)i } 
= 27r 0 dp P 1 - :2 - - 1 . (4. 13b) 

It may be expanded in powers of A to effect a com
parison with Goldstone's many-body perturbation 
theory4; we have checked that they agree to third 
order. 

The problem is now formally solved, for we can 
find all the eigenfunctions and eigenvalues by study
ing Eqs. (4.4), (4.8), and (4.13). First notice that 
the operator T does not depend upon the interaction 
and that if there is no interaction we could write the 
Hamiltonian either as 

(4.14a) 
or as 

(4. 14b) 

Since HI and Hz commute, every eigenstate, -.v, of H 
may be assumed to be an eigenfunction of HI and H2 
separately. Moreover, -.v may also be assumed to be 
an eigenfunction of each Oil' = A; A" and p" = B: vB-v 
for all p > 0, since these operators commute with 
Hand ;no 

Evidently (4.14a) and (4.14b) provide two dif
ferent ways of viewing the noninteracting spectrum. 
Ho is quite degenerate: the raising operators of Ho 
are the b+'s and c+'s. By requiring that -.v also be an 
eigenstate of Oil" p" and H, we are merely attaching 
quantum numbers to the degenerate levels of H o• 

lf a,,-.v = n,,-.v and P,,-.v = m,,-.v (where nv and mv are of 
course integers), we say that we have n" plasmons of 
momentum p and m" plasmons of momentum -po 
With no interaction the energy of a plasmon is 

(4.15) 

We may speak of HI as the quasiparticle part of 
the Hamiltonian; in HI the operator T plays the role 
of subtracting the plasmon part of the energy from 
Ho. 

When we turn on the interaction, the above 
description of the energy levels is still valid, except 
that now we are forced to use the form (4.14b) because 
H2 is no longer T. The degeneracy of H is partially 
removed by the interaction, because now the energy 
of a plasmon is 

t'(p) = Ip I sech 2rp(P). (4.16)' 

Notice that the plasmon energy is always lowered 
[and therefore the plasmons cannot propagate faster 
than the speed of light c = 1, i.e., dE'ldp :S 1. In 
the more realistic case discussed in the Appendix, 
the plasmon energy can be increased by the inter
action although dt'ldp :S 1 is always obeyed.] 
by the interaction; if (4.12) is violated the plasmon 
energy is no longer real and the system becomes 
unstable. Note, there are no plasmons in the ground 
state, so that WI (4.13), is the shift in the ground
state energy of the system. 

There is one important point, however, that re
quires some elucidation. We would like to be able to 
say that in view of the fact that HI, a(p), and (3(p) 
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SOLUTION OF MANY-FERMION SYSTEM 309 

conserve particle number, the most general energy 
level of H (fixed No) is the sum of any energy of 
HI (same No, and no plasmons) plus any (plasmon) 
energy of H2 (note: the plasmon spectrum is inde
pendent of No). Were we dealing with a finite
dimensional vector space, such a statement would 
not be true, for even though HI and H2 commute 
they could not possibly be independent. Thus, if 
H2 had n eigenvalues el, ... , en, and if HI had an 
equal number E I , ••• , En the general total eigen
value would not be any combination of ej + E. for 
this would give too many values (viz. n2 instead of n.) 
But we are dealing with an infinite-dimensional 
Hilbert space and the additivity hypothesis is in 
fact true for the present model. 

To prove this assertion we consider any eigen
state 'I' which is necessarily parameterized by the 
integers n" and m". Consider the state ip = 
III" (A,,)"'(B.,)m'lw. The state ip is nonvanishing 
and has quantum numbers n., = ° = mp. It is also 
an eigenstate of HI with energy El(w). In addition 
(and this is the important point) the state 'I' may be 
recovered from ip by the equation 

'I' = const X (II (A~r(B:r·lip· 
p 

To every state '1', therefore, there corresponds a 
unique state ip from which it may be obtained using 
raising operators. Conversely, to any eigenstate 
of HI (for fixed No) we may apply raising operators 
as often as we please and obtain a new (nonvanishing) 
eigenstate. Thus the general energy is an arbitrary 
sum of quasiparticle and plasmon energies. 

It may be wondered where we used the fact that 
the Hilbert space is infinite-dimensional in the above 
proof. The answer lies in the boson commutation 
relations of the A's and B's. It is impossible to have 
such relations in a finite-dimensional vector space. 

The eigenvalues corresponding to these states 
ip will be labeled in some order, E, (i = 1, 2, ... ), 
so that the total canonical partition function Z(>") 
and the free energy F(>..) are given by 
Z(>..) = e-FCA)lkT 

= (L: e-E;lkT)(e-W,lkT) II (t e-n"(p)lkT). 
i all p n=O 

;00 

(4.17) 

The first factor is difficult to evaluate directly. How
ever it can be obtained circuitously by noting that 
the energies E, are independent of >.. and therefore 

Z(O) = e-FCO)lkT 

= (Le-EilkT) II (te-n<CP)lkT). 
i a.ll p ,,""0 

"0 

(4.18) 

But the second factor can be trivially evaluated, as 
can F(O) free energy of noninteracting fermious. 
Therefore we use (4.18) to eliminate the trace in
volving the E/s in (4.17), with the final result: 

F(>..) F(O) WI 

+ 2kT L: In {(I - r'(p)lkT)/(l _e-«P)/kT)}, (4.19) 
,,>0 

where E and (f;' are given in (4.15) and (4.16). It is 
noteworthy that the ground state and free energy 
both diverge in the case of a a-function potential. 

V. EVALUATION OF THE MOMENTUM 
DISTRIBUTION 

In this section we calculate the mean number of 
particles with momentum k. This quantity is iik 

and is the expectation value of 

(5.1) 

in the ground state. Since iik is an even function of k 
we need only consider k > 0, and it is further con
venient to introduce a Fourier transform~so that 
[using (2.4)J 

L 

iik = -l11 ds dt eik(.-t) I(s, t). (5.2) 

o 

Here 

1(s, t) = (wi tf;~(8)tf;I(t) 1'1') 

= ('1'01 eiStf;~(8)e-iSeiStf;I(t)e-iS 1'1'0), (5.3) 

where S is given by (4.7), 'W' is the new ground state, 
and '1'0 is the noninteracting ground state which is 
filled with b particles between -k, and k, and has 
no holes (or c particles). This assignment depends on 
there having been no level crossing, which can be 
readily verified using (4.7)-(4.13). 

In order to calculate the quantity e,stf;l(t)e- iS we 
introduce the auxiliary operator 

(5.4) 

where 0' is a c number. We observe that II (t) is the 
desired quantity while 

(5.5) 
In addition, 

at/aO' = e,·si[S. tf;l(t)]e- i
•
S 

ei
•
S[21r/L L: P2( -p)l,?(p)p-lei"'Je-i,sf.(t), 

p 

(5.6) 

where we have used the commutation relations (3.7) 
as well as the fact that tf;1 commutes with P3' Equa-
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tion (5.6) is a differential equation for f,,(t) and (5.5) ZI(S, t) = exp {21r/L L [cosh ip(P) - 1]2 
is the boundary condition. The solution is »>0 

/,,(1) = W,,(t)R .. (t)1/;l(t) , (5.7) 
where Likewise, 

W .. (t) = exp {21r/L L (PIC _p)e'pt R-\s)R(t) = R_(s, t)R+(s, t)Z2(S, t), 
p>{) 

(5.8) 
with 

and R+(s, t) = exp (2'11"/L L P2(P) [sinh ip(P)] 
»>0 

R,,(t) = exp {2'/I/L L (P2( _p)eiPt 

,,>0 x p-l(e- i '" _ e-·"t)}. 

(5.9) R_(s, t) = exp {2'11"/L L P2( -p)[sinh ip(P)] 
»>0 

The reader may verify that (5.7) satisfies (5.5) and X p-lfe'''' _ eiP')} , 

(5.6) by using the commutation relations (3.7). ~ 

We recall the well-known rule that Z2(S, t) = exp (21r/L L [sinh ip(P)]2 

exp (A + B) = exp (A) exp (B) exp (-lj2[A, BJ) 
(5.10) 

,,>{) 

(5.15) 

(5.16) 

(5.17) 

when [A, B] commutes with A and B. ]'rom here on 
we shall set (J" = 1 and drop it as a subscript. We 
note that since Pl(P)+ = PI( -p) and P2(P)+ = 
P2( -p), 

We see at once from the definition (3.1b), (3.2b), 
of Pl(P) that, for p > 0, Pl(-P) lit l ) = O. Similarly 
(itll pep) = 0, P2(P) 1'112) = 0, and ('1121 P2( -p) = O. 
Hence, 

R'+(t) = R-1(t) and W+(t) = W-1(t). 

We also note that Rand W commute with each other. 
Thus, (5.3) becomes 

l(s, t) = <wol1/;~(s)R-l(S)W-l(S)W(t)R(t)1/;l(t) 1'110) 

(5.12) 

where 

11(s, t) = ('111 1 1/; ~(s) W-
1
(s)W(t)1/;I(t) !w1). (5.13) 

12(s, t) = ('1121 R-I(s)R(t) 1'112), 

We have used the fact that the ground state is a 
product state: '110 = '111 * '112 where '111 is a state of 
the "1" field and '1'2 is a state of the "2" field. WI is 
filled with b particles up to +k, and has no c parti~ 
cles; '112 is filled with b particles down to -k, and 
has no c particles. 

Now, using the definition (5.8) and the rule (5.10) 
we easily find that 

W-\s)W(t) = W_(s. t)W+(s, t)ZI(S. t), (5.14) 

with 

W+(s, t) = exp {2'11"/L L PI( -p)[cosh se(P) - 1] 
p>O 

X p-l(e;P' - e"")} , 

W_(s, t) = exp {21r/L L PI(P)[cosh ip(P) - 1] 

and 

11(s, t) = ZI(S, t)(wd W:l1/;~(S)W_W+1/;l(t)W;:l 1'111), 

(5.18) 

If we now define 

h+(y) = 2'11"/L L [cosh ip(P) - 1] 
,,>0 

h_(y) = 2'11"/L L [cosh ip(P) - 1] 
,,>0 

combining (3.10) and (5.15) we have that 

W+(s, t) = exp lL N1(y)h+(y) dy. 

W-Cs. t) = exp - LL NI(y)h_(y) dy. 

Since 

[1/;l(X) , N1(y)] = Sex - y)1/;l(X), 

[1/;~(x), Nt(y)] = -sex - y)1/;~(x). 

it follows that 

W+(s, t)1/;l(t)W:;:l(S, t) = 1/;let) exp [-h+(t)] 

W:!(s. t)1/;~(8)W_(8, t) = 1/;~(8) exp [+h-{s)J. 

(5.19) 

(5.20) 

(5.21) 

(5.22) 
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Finally, 

('1'1\ !/I ~(8) !/I1(t) \'1'1) = I/L L ei"O-.l 
"Skp (5.23) 

== Za(S, t). 

Combining all these results, we conclude that 

l(s, t) = Zo(s, t)ZI(S, t)Z2(S, t)Za(s, t), (5.24) 

where 

Zo(S, t) = exp (h_(s) - h+(t» 

= exp {-471"/L L [cosh !pCp) - 1) 
,,>0 

X (1 - ei,,(a-t»}. (5.25) 

In order to make a comparison with Luttinger's 
calculation of fh, we first observe that the functions 
Zj(s, t) are really functions of r = s - t and that 
they are periodic in sand t in (0, L). We then define 
the functions G(r) and Q(r) as follows: 

exp [-Q(r») == G(r) == ZO(r)ZI(r)Z2(r). (5.26) 

Substituting (5.26), (5.24), and (5.23) into (5.2) we 
obtain 

n" = 271"/L L F(k - p), (5.27) 
f)5,kp 

where 

(5.28) 

::: 1/271" L: dr e,k. e -(J (.) • (5.29) 

In (5.29) we have passed to the bulk limit N, 
L ---? co, not an approximation. 

At this point our expression for fi" is formally the 
same as Luttinger's [ef. L (52), L (69»). The dif
ference is that our Q is different from his. He obtains 
Q by evaluating an infinite Toeplitz determinant 
with the result that [L (70») 

Q(r) = >.2/271"21'" dp 1 - cos pr \vCp) \2. (Luttinger) 
o p 

(5.30) 

Our Q, which is the correct one to use, is obtained 
by combining (5.15), (5.17), and (5.25), replacing 
sums by integrals in the usual way, and using the 
definition (4.11) of !pep). The result is 

Q(r) = >.2/271"21'" dp 1 - cos pr \uCp) \2, (5.31) 
o p 

where 

It is worth noting that (5.30) agrees with (5.31) to 
leading order in >.2. 

Since we have not yet specified v(p), we may now 
follow Luttinger's discussion from this point on 
with the proviso that we use the correct (>. depen
dent) u(p) instead of v(p). The reader is referred to 
pages 1159 and 1160 of Luttinger's paper. 

There are two main conclusions one can draw. The 
first is that if we start with a c5-function interaction 
[so that v(p) and hence u(p)] are constants, it can 
be shown that n" = ! for all k. Such a result is quite 
unphysical, but it is not unreasonable because the 
ground-state energy W (4.13a) diverges when v(p) = 
constant at large p. Also, the result would be the 
same if we started with the more physical interaction 

H' = l/L L {PICp) + P2Cp)}{Pl(-P) + P2(-P)}V(P) 
" 

discussed in the Appendix. This is indeed unfor
tunate, because relativistic field theories usually 
begin with local (Il-function) interactions. 

The second conclusion is that if one makes a 
reasonable assumption about v(p), and hence about 
u(p) and Q(r), one finds that for k in the vicinity 
of kF' n" behaves like 

where 

u(k) = 1, 

= -1, 

k>O 

k < 0 
(5.34) 

and d, e, and ex are certain positive constants. Now 
in Luttinger's calculation 

ex = >. 2/471"2v (0) 2 ,(Luttinger) (5.35) 

[cf. L(75»), where v(O) == lim v(P). 
:0-0 

If 2ex < 1, then the conclusion to be drawn is that 
although the interaction removes the discontinuity 
in n" at the Fermi surface, we are left with a function 
that has an infinite slope there. There is, so to speak, 
a residual Fermi surface. In Sec. IV of his paper, 
Luttinger shows that at least for one example of 
v(p) perturbation theory gives the same qualitative 
result as (5.33) with the same value of ex, (5.35). 

If, on the other hand, 2ex > 1 then there is no 
infinite derivative at the Fermi surface. nk is per
fectly smooth there (although, technically speaking, 
it is nonanalytic unless 2ex = odd integer.) In this 
case virtually all trace of the Fermi surface has been 
eliminated. But notice that the correct ex to use is 
obtained by replacing v(O) by u(O) == lim"....o u(p) 
in (5.35), i.e., 
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(5.36) (q + NX V) and (k + MX V) = 27r/L X integer (AI) 

Thus, even subject to the requirement that IXv(O) I 
be less than 7r, 20: can become as large as one pleases. 
Yet perturbation theory predicts (5.35) which yields 
20: always less than t. 

We may conclude that a strong enough interaction 
can eliminate the Fermi surface, while perturbation 
theory predicts that is always there. 

VI. DmLECTRIC CONSTANT 

Because the response to external fields of wave 
vector q only depends on an interaction expression 
linear in the density operators, we can immediately 
obtain for the generalized static susceptibility func
tion or dielectric constant (response + driving force), 
for any temperature, T 

Xx(q, T) = Xo(q, T){sinh !p(q) + cosh !p(q)}2 cosh 2!p. 

1 
= Xo(q, T) 1 + Xv(q)j7r (6.1) 

in terms ofthe "unperturbed" susceptibility xo(q, T). 
It is also a simple exercise to calculate exactly the 
time dependent susceptibility in terms of the "un
perturbed" quantity. 

It is interesting to note that the susceptibility 
can diverge (which is symptomatic of a phase trans
formation) only for 

Xv(q) ~ -7r, (6.2) 

i.e. only for sufficiently attractive interactions and not 
for repulsive [v(q) > 0] interactions. 

Recently Ferre1l6 advanced plausible arguments 
why a one-dimensional metal cannot become super
conducting. We can prove this rigorously in the 
present model. The electron-phonon interaction is 

HoI-ph = L: g(p)[PI(P) + P2(P)]' [~p + ~~p], (6.3) 

where ~ and f are the phonon field operators. In 
the "filled-sea" limit this coupling is bilinear in 
harmonic-oscillator operators, and therefore the 
Hamiltonian continues to be exactly diagonalizable. 
The new normal modes can be calculated and there 
is found to be no phase transition at any finite 
temperature. 

APPENDIX 

We shall be interested in extending Luttinger's 
model in two ways. Firstly, we note that the restric
tion V = 0 is really not necessary. Turning back to 
Eqs. (2.13) et seq. we impose periodic boundary 
conditions \[I ( •. " Xi + L, ... ) = \[I ( .• " Xi, ••• ), 

and find that 
6 R. A. Ferrell, Phys. Rev. Letters 13, 330 (1964). 

replace the usual condition (2.16), where N = 
number of "I" particles and M = number of "2" 
particles. However, when N, M ~ 00 in the field
theoretic limit the problem evidently becomes ill
defined unless V ~ O. 

A less trivial observation concerns the form of 
the interaction potential. There is no reason to 
restrict it to the form ex: PIP2, and in fact the more 
realistic two-body interaction 

X 
H' = L L: v(P){ PI (-p) + P2( -p) II PI (P) + P2(P) I 

p 

(A2) 

is fully as soluble as the one assumed in the text, 
for any strength positive v(p), and provided only 

(A3) 

i.e. provided no Fourier component is too attractive. 
The shift in the ground-state energy is now given by 

W2 = ?; p{ (1 + 2X:(P)Y - I}. (A4) 

The plasmon energy is now 

E"(P) == /pl (1 + 2Xv(P)/7r)i (A5) 

and for the important case of the Coulomb repulsion, 
v(p) = p-2, the plasmons describe a relativistic 
boson field with mass 

(A6) 

and dispersion 

E"(P) = (p2 + m*2)1. (A7) 

Here, too, dE" jdp < 1. 
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